revista de divulgación del Instituto de Astrofísica de Andalucía

Deconstrucción

NUEVOS PLANETAS DESDE EL OBSERVATORIO DE CALAR ALTO

EL ESPECTRÓGRAFO CARMENES, CODESARROLLADO DESDE EL INSTITUTUTO DE ASTROFÍSICA DE ANDALUCÍA Y QUE OPERA DESDE CALAR ALTO, ESTÁ PROPORCIONANDO EXCITANTES HALLAZGOS EN LA BÚSQUEDA DE PLANETAS MÁS ALLÁ DEL SISTEMA SOLAR
Por Redacción Revista IAA

Un anómalo sistema planetario que desafía nuestra comprensión de cómo se forman los planetas

El instrumento CARMENES ha hallado en torno a la estrella enana roja GJ3512 un planeta gigante gaseoso, así como indicios de la presencia de otro. El hallazgo, publicado en la revista Science, pone en tela de juicio el modelo de formación de los planetas gigantes más aceptado, que afirma que nacen a partir de un núcleo sólido que va acumulando gas, y abre la posibilidad de que se formen tras la ruptura en fragmentos de un disco protoplanetario.
A día de hoy, existe un modelo de formación de planetas gigantes que explica el nacimiento de Júpiter y Saturno en nuestro Sistema Solar, así como el de muchos otros planetas gigantes gaseosos descubiertos alrededor de otras estrellas. Conocido como “modelo de acumulación de núcleos”, plantea que el proceso comienza con la formación de núcleos rocosos de unas pocas masas terrestres dentro del disco protoplanetario que rodea la estrella; cuando se alcanza una masa crítica, comienzan a acumular grandes cantidades de gas hasta que alcanzan la masa de los planetas gigantes.
Sin embargo, este modelo no sirve para GJ3512. Las estrellas enanas muestran discos de baja masa, de modo que la cantidad de material disponible en el disco para formar planetas también se reduce significativamente.
La presencia de un gigante gaseoso alrededor de una estrella de baja masa indica que el disco original era anormalmente masivo, o que el modelo dominante no se aplica en este caso. Además, este planeta se halla en una órbita excéntrica, lo que suele interpretarse como el indicio de que, en el pasado, la interacción con otro planeta masivo produjo una alteración de la órbita (este segundo planeta habría sido expulsado del sistema como consecuencia).
El consorcio CARMENES trabajó en estrecha colaboración con varios grupos internacionales líderes en dinámica y formación planetaria, pero los modelos más actualizados no permitían la formación de un planeta como el hallado en torno a GJ3512, y mucho menos de dos.
Así se retomó otro posible escenario de formación de planetas, el “modelo de inestabilidad de disco”, que defiende que los gigantes gaseosos pueden formarse directamente a partir de la acumulación de gas y polvo en el disco protoplanetario en lugar de requerir un núcleo “semilla”. Un modelo que, hasta ahora, solo era compatible con un grupo reducido de planetas jóvenes, calientes y muy masivos situados a grandes distancias de su estrella anfitriona.


Observaciones de satélite y desde tierra permiten hallar un trío planetario en una estrella cercana

La combinación de datos del satélite TESS (Transiting Exoplanet Survey Satellite, NASA) con observaciones con detectores en tierra, entre ellos el espectrógrafo CARMENES, ha permitido hallar un sistema planetario triple en una estrella moderadamente brillante a tan solo treinta y un años luz de distancia, lo que lo convierte en un objetivo preferente para su estudio en detalle.
Los nuevos mundos giran en torno a GJ 357, una estrella enana de tipo M que presenta aproximadamente un tercio de la masa y tamaño del Sol. En febrero del 2019, las cámaras de TESS observaron cómo el brillo de la estrella se atenuaba ligeramente cada 3,9 días, lo que revelaba la presencia de un exoplaneta en tránsito (los tránsitos son mini eclipses producidos cuando los planetas pasan por delante de su estrella).
Un equipo internacional de astrónomos empleó datos de observatorios terrestres para confirmar la presencia del planeta y, durante ese proceso, descubrió dos mundos adicionales. Los tránsitos observados por TESS pertenecen a GJ 357 b, un planeta un 22% mayor que la Tierra que gira en torno a su estrella once veces más cerca que Mercurio del Sol. Sin tener en cuenta los efectos de calentamiento de una posible atmósfera, se trataría de una “tierra caliente”, con una temperatura de unos 252 grados centígrados. Es demasiado caliente para albergar vida pero, siendo el tercer planeta transitante más cercano, se trataría de uno de los mejores candidatos disponibles para el estudio de las atmósferas exoplanetarias, una línea de investigación que ya afronta el instrumento CARMENES.
GJ 357 c tiene una masa de al menos 3,4 veces la de Tierra y gira alrededor de su estrella cada 9,1 días, a una distancia un poco más del doble que la del planeta en tránsito, lo que apunta a una temperatura de unos 128 grados. TESS no observó tránsitos de este planeta, lo que sugiere que su órbita se halla ligeramente inclinada con respecto a la órbita de la “tierra caliente”, por lo que nunca transita sobre el disco de la estrella.
Por su parte, GJ 357 d, el planeta más lejano conocido del sistema, muestra una masa mínima de seis veces la terrestre, y orbita la estrella cada 55,7 días a una distancia equivalente al 20% de la distancia Tierra-Sol. El tamaño y la composición del planeta son aún desconocidos, pero un mundo rocoso con esta masa oscilaría entre una y dos veces el tamaño de la Tierra. Con una temperatura de equilibrio de unos 54 grados bajo cero, una atmósfera densa podría atrapar el calor suficiente para que exista agua líquida en su superficie.
“Este descubrimiento ilustra la potencia de la combinación de los datos espaciales y terrestres, permitiéndonos derivar la masa y densidad del planeta detectado por TESS, usando observaciones espectroscópicas obtenidas desde tierra, y revelar incluso la existencia de otros planetas, que de otra forma habrían pasado desapercibidos”, señala Cristina Rodríguez López, investigadora del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en el hallazgo.

Dos planetas templados de tipo terrestre alrededor de la estrella de Teegarden, una enana roja cercana

CARMENES ha permitido hallar dos planetas en torno a la estrella de Teegarden, una de las más cercanas conocidas. Con masas similares a la de la Tierra, sus temperaturas podrían ser lo suficientemente suaves como para albergar agua líquida en la superficie, según el estudio publicado en la revista Astronomy & Astrophysics.
Situada a una distancia de solo 12,5 años luz, la estrella de Teegarden es el sistema estelar número veinticuatro más cercano al nuestro, y una de las estrellas enanas rojas más pequeñas que se conocen. A pesar de su proximidad y debido a su bajo brillo, la estrella de Teegarden no fue identificada hasta el año 2003.
La temperatura de la estrella de Teegarden es de solamente 2.600 grados (casi la mitad de los 5.500 grados del Sol), es mil quinientas veces más débil y diez veces menos masiva que nuestra estrella. Como resultado, irradia la mayor parte de su energía en longitudes de onda rojas e infrarrojas, lo que la convierte en un blanco ideal para CARMENES, que opera simultáneamente en el visible y en el infrarrojo.

Las mediciones doppler de la estrella de Teegarden mostraron la presencia de al menos dos señales, ahora identificadas como los dos nuevos exoplanetas, denominados estrella de Teegarden b y c. La obtención de una detección sólida requirió la recolección de más de doscientas mediciones y, en función del movimiento medido, los investigadores han deducido que el planeta estrella de Teegarden b tiene una masa similar a la de la Tierra y completa una órbita en torno a la estrella cada 4,9 días a un 2,5 % de la distancia Tierra-Sol. Por su parte, estrella de Teegarden c es también similar a la Tierra en términos de masa, completa su órbita en 11,4 días y está situado a un 4,5 % de la distancia Tierra-Sol.
Dado que la estrella de Teegarden irradia mucha menos energía que nuestro Sol, las temperaturas en estos planetas deberían ser suaves y podrían, en principio, albergar agua líquida en la superficie, especialmente en el planeta más exterior, estrella de Teegarden c. Este tipo de planetas constituyen el objetivo principal para las futuras búsquedas de vida más allá de nuestro Sistema Solar.
Los dos planetas pueden ser parte de un sistema más grande, ya que las estrellas de muy baja masa suelen tener sistemas planetarios densamente poblados.